www.zhifeiya.cn

敲码拾光专注于编程技术,涵盖编程语言、代码实战案例、软件开发技巧、IT前沿技术、编程开发工具,是您提升技术能力的优质网络平台。

Convolutional Layer

卷积神经网络反向传播的梯度计算方法 卷积层与池化层的梯度传递逻辑

本文深入探讨了卷积神经网络反向传播中卷积层与池化层的梯度传递逻辑。首先介绍了反向传播算法的基础,包括前向传播和反向传播的过程,并通过简单的全连接神经网络示例进行说明。接着详细阐述了卷积层的梯度计算方法,包括卷积核的梯度和输入的梯度计算。然后介绍了池化层的梯度传递逻辑,分别讨论了最大池化和平均池化的情况。最后分析了该技术的应用场景、优缺点和注意事项,并进行了总结。
convolutional neural network Backpropagation Gradient Calculation Convolutional Layer Pooling Layer