19 2月 2026/2/19 02:38:47 卷积神经网络的特征蒸馏技术 如何将深层特征的知识迁移到浅层 本文详细介绍了卷积神经网络的特征蒸馏技术如何将深层特征的知识迁移到浅层。首先阐述了技术背景和基本原理,通过 PyTorch 代码示例展示了特征蒸馏的实现方式。接着介绍了将深层特征知识迁移到浅层的方法,包括特征匹配和软标签蒸馏。还分析了应用场景、技术优缺点和注意事项。特征蒸馏技术能提高效率、降低资源需求,但也存在性能损失等缺点。 feature distillation Convolutional Neural Networks Knowledge Transfer