www.zhifeiya.cn

敲码拾光专注于编程技术,涵盖编程语言、代码实战案例、软件开发技巧、IT前沿技术、编程开发工具,是您提升技术能力的优质网络平台。

Testing Metrics

怎样评估CNN模型的对抗鲁棒性 常用的测试指标与攻击算法

本文详细介绍了评估CNN模型对抗鲁棒性的常用测试指标与攻击算法。包括准确率、攻击成功率、扰动大小等测试指标,以及快速梯度符号法(FGSM)、迭代快速梯度符号法(I - FGSM)等攻击算法。结合Python和PyTorch的示例代码进行说明,分析了应用场景、技术优缺点和注意事项,帮助读者全面了解如何评估CNN模型的对抗鲁棒性。
CNN Adversarial Robustness Testing Metrics Attack Algorithms